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Abstract. One of the main research topics in DNA computing is asso-
ciated with the design of information encoding single or double stranded
DNA strands that are “suitable” for computation. Double stranded or
partially double stranded DNA occurs as a result of binding between
complementary DNA single strands (A is complementary to T and C is
complementary to G). This paper continues the study of the algebraic
properties of DNA word sets that ensure that certain undesirable bonds
do not occur. We formalize and investigate such properties of sets of se-
quences, e.g., where no complement of a sequence is a prefix or suffix of
another sequence or no complement of a concatenation of n sequences
is a subword of the concatenation of n + 1 sequences. The sets of code
words that satisfy the above properties are called θ-prefix, θ-suffix and θ-
intercode respectively, where θ is the formalization of the Watson-Crick
complementarity. Lastly we develop certain methods of constructing such
sets of DNA words with good properties and compute their informational
entropy.

1 Introduction

Several attempts have been made to address the problem of encoding information
on DNA and many authors have proposed various solutions. A common approach
has been to use the Hamming distance [2,7,8,9,25]. Experimental separation of
strands with ”good” sequences that avoid intermolecular cross hybridization was
reported in [5,6]. In [12], Kari et.al. introduced a theoretical approach to the
problem of designing code words. Theoretical properties of languages that avoid
certain undesirable hybridizations were discussed in [14,16,18]. Based on these
ideas and code-theoretic properties, a computer program for generating code
words is being developed [13,20]. Another algorithm, based on backtracking, for
generating such code words is also developed by Li [22]. In [21] the author used
the notion of partial words with holes for the design of DNA strands.

In this paper we continue the study of the algebraic properties of DNA lan-
guages suitable for computation. More precisely, every biomolecular protocol in-
volving DNA or RNA generates molecules whose sequences of nucleotides form
a language over the four letter alphabet Δ = {A, G, C, T }. The Watson-Crick
(W/C) complementarity of the nucleotides defines a natural involution mapping
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θ, A �→ T and G �→ C which is an anti-morphism of Δ∗. Undesirable Watson-
Crick bonds (undesirable hybridizations) can be avoided if the language satisfies
certain coding properties. In this paper we concentrate on θ-prefix, θ-suffix and
θ-intercode (i.e.) languages where no Watson-Crick complement of a word is a
prefix or suffix of another word, respectively no Watson-Crick complement of
a composition of n words is a subword of a composition of n + 1 words (See
Fig 1 for the types of hybridizations that are avoided if a word set satisfies
these properties). We start the paper with definitions of coding properties that
avoid intermolecular cross hybridizations. The notions of θ-prefix and θ-suffix
languages have been defined in [16] under the names of θ-p-compliant and θ-s-
compliant respectively. Here we also consider two additional coding properties
namely θ-bifix code and θ-intercode. We make several observations about the
closure properties of such languages. In particular, we concentrate on properties
of languages that are preserved by union and concatenation.

.....

.....

(a)

(b)
(c)

(d) (e)

Fig. 1. Various types of intermolecular hybridization that we want to avoid: (a) a
code word is the reverse complement of a subword of a concatenation of two other
code words: θ-comma-free codes avoid such hybridizations, (b) the catenation of m
codewords is the reverse complement of a subword of a concatenation of composition
of m + 1 code words: θ-intercodes (a new notion introduced in this paper) avoid such
hybridizations (c) a code word is a reverse complement of a subword of another code
word: θ-infix codes avoid such hybridizations (d) a code word is the reverse complement
of a suffix of another code word: θ-suffix codes avoid such hybridizations, (e) a code
word is the reverse complement of a prefix of another code word: θ-prefix codes avoid
such hybiridzations. (The 3′ end is indicated by an arrow.)

Also, we show that if a set of DNA strands has “good” coding properties that
are preserved under concatenation, then the same properties will be preserved
under arbitrary ligation of the strands. Section 3 investigates closure properties
of various types of involution codes. Algebraic properties of θ-intercodes are
discussed in Section 4. We introduce and discuss the properties of sets whose n
element subsets are θ-intercodes and θ-comma-free codes in Section 5. Section 6
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describes several methods to generate involution codes and also calculate their
informational entropy. Since it turns out that the entropy of these generated
involution codes is greater than log 2, by the coding theorem ([1,23]) it follows
that the constructed code words can be used to encode binary strings. We end
with a few concluding remarks.

2 Definitions and Properties

An alphabet Σ is a finite non-empty set of symbols. We will denote by Δ the
special case when the alphabet is {A, G, C, T } representing the DNA nucleotides.
A word u over Σ is a finite sequence of symbols in Σ. We denote by Σ∗ the set
of all words over Σ, including the empty word 1 and by Σ+, the set of all non-
empty words over Σ. We note that with the concatenation operation on words,
Σ∗ is the free monoid and Σ+ is the free semigroup generated by Σ. The length
of a word u = a1 · · · an is n and is denoted by |u|. For words representing DNA
sequences, we will use the following convention. A word u over Δ denotes a DNA
strand in its 5′ → 3′ orientation. The Watson-Crick complement of the word u,
also in orientation 5′ → 3′ is denoted by

←
u . For example if u = AGGC then

←
u= GCCT .

Throughout the rest of the paper, we concentrate on finite sets X ⊆ Σ+ that
are codes i.e. every word in X+ can be written uniquely as a product of words
in X . For the background on codes we refer the reader to [4,26]. We will need
the following definitions:

PPref(X) = {u | ∃v ∈ Σ+, uv ∈ X }
PSuff(X) = {u | ∃v ∈ Σ+, vu ∈ X }
PSub(X) = {u | ∃v1 , v2 ∈ Σ∗, v1 v2 �= 1 , v1uv2 ∈ X }

We define the set of prefixes, suffixes and subwords of a set of words as Pref ,
Suff and Sub. Similarly, we have Suffk(w) = Suff(w)∩Σ k , Prefk (w) = Pref(w)∩
Σ k , Subk (w) = Sub(w) ∩ Σ k . We follow the definitions initiated in [12] and
used in [13]. An involution θ : Σ → Σ of a set Σ is a mapping such that θ2

equals the identity mapping, θ(θ(x)) = x, ∀x ∈ Σ. The mapping ν : Δ → Δ
defined by ν(A) = T , ν(T ) = A, ν(C) = G, ν(G) = C is an involution on
Δ and can be extended to a morphic involution of Δ∗. Since the Watson-Crick
complementarity appears in a reverse orientation, we consider another involution
ρ : Δ∗ → Δ∗ defined inductively, ρ(s) = s for s ∈ Δ and ρ(us) = ρ(s)ρ(u) =
sρ(u) for all s ∈ Δ and u ∈ Δ∗. This involution is antimorphism such that
ρ(uv) = ρ(v)ρ(u). The Watson-Crick complementarity then is the antimorphic
involution obtained by the composition νρ = ρν. Hence for a DNA strand u we
have that ρν(u) = νρ(u) =

←
u . The involution ρ reverses the order of the letters

in a word and as such is used in the rest of the paper.
The following Definition 1 [14,16] introduces notions meant to formalize a

variety of language properties, each of whom guarantees the absence of a cer-
tain unwanted hybridization. The notion of θ-infix and θ-comma-free code were
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introduced in [12] and was called θ-compliant and θ-free respectively. The defi-
nition of θ-intercode and θ-outfix code are new notions introduced here.

Definition 1. Let θ : Σ∗ → Σ∗ be a morphic or antimorphic involution and
X ⊆ Σ+.

1. The set X is called θ-infix-code if Σ∗θ(X)Σ+∩X = ∅ and Σ+θ(X)Σ∗∩X =
∅.

2. The set X is called θ-comma-free-code if X2 ∩ Σ+θ(X)Σ+ = ∅.
3. The set X is called θ-strict-code if X ∩ θ(X) = ∅ .
4. The set X is called θ-prefix-code if X ∩ θ(X)Σ+ = ∅.
5. The set X is called θ-suffix-code if X ∩ Σ+θ(X) = ∅.
6. The set X is called θ-bifix-code if X is both θ-prefix and θ-suffix.
7. The set X is called a θ-intercode if Xm+1 ∩ Σ+θ(Xm)Σ+ = ∅, m ≥ 1. The

integer m is called the index of X.
8. The set X is called θ-outfix-code if for u, θ(u1)xθ(u2) ∈ X with θ(u) =

θ(u1)θ(u2) implies x = 1 .

Note that θ-infix languages avoid undesirable hybridization of the type depicted
in Fig 1c, θ-comma-free languages avoid undesirable hybridization of the type
depicted in Fig 1a, θ-intercodes avoid undesirable hybridization of the type
depicted in Fig 1b, θ-suffix languages avoid undesirable hybridization of the
type depicted in Fig 1d, θ-prefix languages avoid undesirable hybridization of
the type depicted in Fig 1e, θ-outfix languages avoid undesirable hybridization of
the type depicted in Fig 2. Note that a θ-intercode of index one is θ-comma-free.

u

q
x

p

Fig. 2. Another type of intermolecular hybridization that we want to avoid: the reverse
complement of a code word is a concatenation of a prefix and a suffix of another code
word. A θ-outfix code (a new notion defined in this paper) avoids such hybridizations.

Also note that X is θ-intercode of index m if and only if θ(X) is θ-intercode of in-
dex m. We have defined several properties that are desirable for DNA languages
to have. The properties 1 to 4 in Definition 1 have been extensively studied in
[12,14,16]. Here we complete this study by proving the relationship between sev-
eral properties. The following proposition shows the connection between θ-infix
and θ-comma-free languages. We use θ : Σ∗ �→ Σ∗ to be either morphic or anti-
morphic involution throughout this paper unless specified. In the following, we
list some of the properties and relations between θ-infix and θ-comma-free code.

Proposition 1. Let θ : Σ∗ → Σ∗ be a morphic or antimorphic involution and
X ⊆ Σ∗. Then the following are equivalent.
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1. X is a θ-comma-free code.
2. X is θ-infix and θ(X) ∩ PSuff(X)PPref(X) = ∅.
3. X is θ-infix and X2 ∩ PPref(X)θ(X)PSuff(X) = ∅.
4. X is θ-infix and Xn ∩ (Σ+θ(X)Σ+Xn−2) = ∅.
5. X is θ-infix and Xn ∩ (Xn−2Σ+θ(X)Σ+) = ∅.

Proposition 2. Let X ⊆ Σ+ be a θ-infix code. Then X3 ∩ Σ+θ(X2)Σ+ = ∅ if
and only if θ(X2) ∩ PSuff(X)XPPref(X) = ∅.
Corollary 1. If X ⊆ Σ+ is θ-comma-free then X2 ∩PSuff(X)θ(X)PPref(X) =
∅ and θ(X2) ∩ PSuff(X)XPPref(X) = ∅.

3 Closure Properties of Involution Codes

In this section we discuss several properties of θ-prefix, θ-suffix, θ-bifix, θ-outfix
codes and θ-strict codes. Besides being generalizations of outfix codes, the moti-
vation behind introducing the notion of θ-outfix codes comes from the fact that
a set of DNA words that is a θ-outfix code avoids any undesirable hybridization
of the type in Fig 2. Ensuring that no such unwanted hybridization occurs is
obviously desirable from an experimental view point. It is interesting to note
that certain properties that are not satisfied by θ-prefix and θ-suffix codes are
satisfied by θ-bifix codes. In particular we discuss the conditions under which
such languages are closed under arbitrary concatenation. From a practical point
of view, these results give conditions under which, given a small finite set of
“good” codewords, we can construct arbitrarily large sets of good code words by
concatenation.

Lemma 1. Let X ⊆ Σ+.

1. If X is θ-infix then X is both θ-prefix and θ-suffix and hence a θ-bifix code.
2. For a morphic involution θ, X is θ-prefix(suffix) if and only if θ(X) is θ-

prefix(suffix).
3. For an antimorphic involution θ, X is θ-prefix(suffix) if and only if θ(X) is

θ-suffix(prefix).
4. X is θ-bifix if and only if θ(X) is θ-bifix.

In the next proposition we show that the family of θ-prefix(suffix) codes is
closed under concatenation when θ is a morphic involution and hence for a
θ-prefix(suffix) code X , any arbitrary power of X is also a θ-prefix(suffix) code
when θ is a morphic involution.

Proposition 3. For a morphic involution θ, the family of θ-prefix (θ-suffix)
codes is closed under concatenation.

Proof. Let X1 and X2 be θ-prefix. Suppose X1X2 is not θ-prefix then there exists
x1x2, y1y2 ∈ X1X2 such that x1x2 = θ(y1y2)b = θ(y1)θ(y2)b for some b ∈ Σ+.
Note that neither x1 is a prefix of θ(y1) nor θ(y1) is a prefix of x1 since both X1
and θ(X1) (Please refer 1 ) are θ-prefix. Hence x1 = θ(y1) which implies that
θ(y2) is a prefix of x2 which is a contradiction to our assumption that X2 is
θ-prefix. Similar proof works for θ-suffix. �
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Corollary 2. Let θ be a morphic involution.

1. If X is θ-prefix then Xn is θ-prefix for all n ≥ 1.
2. If X is θ-suffix then Xn is θ-suffix for all n ≥ 1.

Note that the above proposition does not hold when θ is an antimorphic involu-
tion. For example let X1 = {aa, baa} and X2 = {bb, bbb} over the alphabet set
Σ = {a, b} and let θ be antimorphism such that a �→ b and b �→ a. Note that
both X1 and X2 are θ-prefix but X1X2 is not θ-prefix since for aabb ∈ θ(X1X2),
aabbb ∈ X1X2. Hence when θ is an antimorphic involution we need an additional
restriction on the sets X1 and X2 which is shown in the next proposition.

Proposition 4. For an antimorphic involution θ, if X1 and X2 are such that
X1 ∪ X2 is θ-bifix, then X1X2 and X2X1 are θ-bifix.

Proof. Immediate.

Corollary 3. Let θ be morphic or antimorphic involution on Σ∗. If X is a
θ-bifix code then Xn is a θ-bifix code for all n ≥ 1.

In the next proposition we provide with the necessary condition under which for
a set X , the Kleene star of the set X is θ-prefix(suffix).

Proposition 5. If X is such that X is θ-strict-infix code then X+ is both θ-
prefix and θ-suffix.

Proof. To show that X+ is θ-prefix (i.e.) to show that X+ ∩ θ(X+)Σ+ = ∅.
Suppose X+ is not θ-prefix code then there exists x1x2...xn = θ(y1...ym)b for
xi, yj ∈ X, i = 1, .., n, j = 1, ..., m and b ∈ Σ+. For a morphic θ, x1x2...xn =
θ(y1)...θ(ym)b implies either x1 is a subword of θ(y1) or x1 = θ(y1) or θ(y1) is
a subword of x1. All cases contradict our assumption that X is strictly θ-infix.
Similarly we can prove that X+ is θ-suffix code.

The next two propositions gives us conditions under which when a composition
of some arbitrary languages satisfy good encoding properties, the right and the
left context of such languages also satisfy the same good encoding properties.

Proposition 6. Let X ⊆ Σ+ be such that X is not a θ-strict code.

1. If Xm is θ-prefix for m ≥ 1, then X is θ-prefix.
2. If Xm is θ-suffix for m ≥ 1, then X is θ-suffix.
3. If Xm is θ-bifix for m ≥ 1, then X is θ-bifix.

Proposition 7. Let Xi, i = 1, 2, ..., m be non empty languages over Σ such that
Xi ∩θ(Xi) �= ∅, i = 1, 2, ..., m. Let θ be a morphic involution. Then the following
are true.

1. If X1X2...Xm is θ-prefix, then X2...Xm, X3...Xm,..., Xm−1Xm, Xm are θ-
prefix codes.
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2. If X1X2...Xm is θ-suffix, then X1...Xm−1, X1...Xm−2,..., X1X2, X1 are θ-
suffix codes.

Proof. We prove (i) for the case m = 2 and the result follows by induction.
Assume X1X2 is θ-prefix. If X2 is not θ-prefix code then there exists x2, y2 ∈ X2
such that x2 = θ(y2)b. Since X1 ∩ θ(X1) �= ∅, there exists x1, y1 ∈ X such that
x1 = θ(y1) and hence x1x2 = θ(y1)θ(y2)b = θ(y1y2)b which is a contradiction to
our assumption that X1X2 is θ-prefix. Similar proof works for (ii). �

In the following propositions we investigate certain properties of θ-outfix codes.
We recall the following definition of insertion into a set from [15].

For X ⊆ Σ+, let

Y = θ(X) ← Σ+ =
⋃

u∈θ(X),v∈Σ+(u ← v)

where, u ← v = {u1vu2 : u = u1u2, u1, u2 ∈ Σ∗}.
The next lemma is a direct consequence of the definition of θ-outfix codes.

Lemma 2. For X ⊆ Σ+ let Y be the set obtained above. Then X is a θ-outfix
code iff Y ∩ X = ∅.

Corollary 4. For a regular X, it is decidable whether X is a θ-outfix code or
not.

Proof. For a regular X , θ(X) is regular and it has been show in [15] that for
regular set θ(X) and Σ+, Y = θ(X) ← Σ+ is also regular. It is decidable whether
a regular set is empty or not. Hence it is decidable whether X is a θ-outfix code
or not.

It is easy to see that every θ-outfix code is θ-prefix and θ-suffix and hence a θ-bifix
code. Also note that X is θ-outfix code if and only if θ(X) is a θ-outfix code. In
the following propositions we investigate the closure properties of θ-outfix codes.
In most cases we omit the proof.

Proposition 8. For a morphic involution θ, the family of θ-outfix codes is
closed under concatenation.

Note that the above proposition does not hold when θ is an anitmorphic invo-
lution. For example let X1 = {aa, baa} and X2 = {bb, bbb} over the alphabet set
Σ = {a, b} and let θ be antimorphism such that a �→ b and b �→ a. Note that
both X1 and X2 are θ-outfix but X1X2 is not θ-outfix since for aabb ∈ θ(X1X2),
aa(b)bb ∈ X1X2. But the cases become simpler if we just work with one set X .
In the next proposition, we show that a θ-outfix code is closed under arbitrary
concatenation with itself for both morphic and antimorphic involution.

Proposition 9. X is a θ-outfix code iff X+ is a θ-outfix code.

Proposition 10. For a morphic involution θ, let X1, X2 ⊆ Σ+ be such that
Xi ∩ θ(Xi) �= ∅ for i = 1, 2. If X1X2 is θ-outfix code then both X1 and X2 are
θ-outfix codes.
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Proof. Suppose that X1 is not θ-outfix, then xy, θ(x)uθ(y) ∈ X1 for some u ∈
Σ+, x, y ∈ Σ∗. Consider z ∈ X2 ∩ θ(X2). Then xyz ∈ X1X2 and θ(x)uθ(y)z ∈
X1X2, a contradiction. Hence X1 must be a θ-outfix code. Similarly, we can
show that X2 is a θ-outfix code. �

In the next proposition we investigate certain properties of θ-strict codes and
their relation with other sets of codes.

Lemma 3. 1. If X1, X2 ⊆ Σ+ are θ-strict, then X1 ∪ X2 is not necessarily
θ-strict.

2. Let X1, X2 be θ-strict. Then X1 ∩θ(X2) = ∅ and X2 ∩θ(X1) = ∅ if and only
if X1 ∪ X2 is θ-strict.

3. If X1 and X2 are θ-strict, then X1 ∩ X2 is θ-strict.
4. Let X1 and X2 be θ-strict. When θ is morphism, if one of X1 or X2 is

θ-prefix , then X1X2 is θ-strict. When θ is antimorphism, if X1 ∪ X2 is
θ-strict-bifix, then X1X2 is θ-strict.

5. If X is θ-strict-bifix, then X+ is θ-strict.
6. X is θ-strict if and only if θ(X) is θ-strict.

4 Involution Intercodes

We now generalize the concept of θ-comma-free codes to θ-intercodes and study
the properties of such codes. Note that if θ is the identity function, a θ-intercode
becomes the well known notion of intercode, widely studied in the literature [26].
Besides being generalizations of intercodes, the motivation behind introducing
the notion of θ-intercodes comes from the fact that a set of DNA words that is
a θ-intercode avoids any undesirable hybridization of the type in Fig 1b. Ensur-
ing that no such unwanted hybridization occurs is obviously desirable from an
experimental view point.

Proposition 11. Let X be a regular language. Then for a given m ≥ 1, it is
decidable whether or not X is a θ-intercode of index m.

Proof. X is a θ-intercode of index m if and only if Xm+1 ∩ Σ+θ(Xm)Σ+ = ∅.
Since the family of regular languages is closed under catenation and intersection,
Xm+1 and Σ+θ(Xm)Σ+, θ(Xm) and Xm+1 ∩ Σ+θ(Xm)Σ+ are regular. It is
decidable whether a regular language is empty or not.

Proposition 12. Let |Σ| ≥ 2. Then for any m ≥ 1, every θ-intercode of index
m is a θ-intercode of index m + 1.

Proof. Given X is a θ-intercode of index m hence Xm+1 ∩ Σ+θ(Xm)Σ+ = ∅.
Suppose Xm+2 ∩ Σ+θ(Xm+1)Σ+ �= ∅ then there exists x1, x2, ...xm+2, y1, y2,
...ym+1 ∈ X such that x1x2...xm+2 = aθ(y1...ym+1)b for some a, b ∈ Σ+.
If |a| ≥ |x1| then x2...xm+2 ∈ Σ+θ(y2)...θ(ym+1)Σ+. If |b| ≥ |xm+2| then
x1...xm+1 ∈ Σ+θ(y1)...θ(ym)Σ+. If |a| < |x1|, |b| < |xm+2| then a1x2...xm+1b1
= θ(y1)...θ(ym+1) which implies y1...ym+1 = a2θ(x2...xm+1)b2 which is a contra-
diction.

Both cases contradict our assumption that X is a θ-intercode of index m. �
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Proposition 13. For any involution θ, every θ-intercode X such that X ∩
θ(X) �= ∅ is a θ-bifix code.

Proof. X is a θ-intercode of index m, then by definition Xm+1∩Σ+θ(Xm)Σ+ =
∅. Since X ⊆ Σ+ and Xm+1 ∩ θ(Xm+1)Σ+ ⊆ Xm+1 ∩ Σ+θ(Xm)Σ+ = ∅ we
have Xm+1 is a θ-prefix code which implies X is a θ-prefix code by proposition 6.
Similarly we can show that X is a θ-suffix code. �

The converse of the above proposition is not true. For example let X = {aab, aba}
over the alphabet set Σ = {a, b}. Let θ be a morphic involution with a �→ b and
b �→ a. Note that X is both θ-prefix and θ-suffix but aaθ(aba)a = aababa ∈ X2.
Hence X is not θ-intercode of index one. Also it is shown in [12] that every
θ-comma-free code is θ-infix. But this is not the case for θ-intercodes of index
m ≥ 2. One example is as follows: Let X = {b2ab3ab2, a3} over the alphabet set
Σ = {a, b} and let θ be an antimorphic involution such that a �→ b and b �→ a.
The language X is θ-intercode of index 2 but not a θ-infix code.

Proposition 14. If X is θ-comma-free code then X is a θ-intercode of index m
for all m ≥ 1.

Proof. Suppose Xm+1 ∩ Σ+θ(Xm)Σ+ �= ∅, then there exists x1, x2, ...xm+1,
y1, y2, ..., ym ∈ X and a, b ∈ Σ+ such that x1x2...xm+1 = aθ(y1y2...ym)b. Then
either θ(yi) is a subword of xj which contradicts X being θ-infix and hence
θ-comma-free or θ(yi) is a subword of xjxj+1 which contradicts X being θ-
comma-free. �

Note that the converse of the above proposition is not true. For example let X =
{cbaa, baad, babb} over the alphabet set Σ = {a, b, c, d} . Let θ be an antimorphic
involution with a �→ b and c �→ d. It is easy to check that X3 ∩Σ+θ(X2)Σ+ = ∅
but X is not θ-comma-free since cbθ(babb)ad = cbaabaad ∈ X2.

For any word u = a1a2...an ∈ Σ∗ with ai ∈ Σ define the reverse of u as
û = anan−1...a2a1. For X ⊆ Σ+, define X̂ = {û : u ∈ X . The following charac-
terization of θ-intercodes of index m is an immediate result from the definition
of θ-intercodes.

Proposition 15. Let X ⊆ Σ+. The following are equivalent.

1. X is a θ-intercode of index m.
2. X̂ is a θ-intercode of index m.
3. For any u ∈ Xm, x, y ∈ Σ∗, xθ(u)y ∈ Xm+1 implies x = 1 or y = 1.

Proposition 16. If X is a θ-intercode of index m then Xk ∩Σ+θ(Xm)Σ+ = ∅
for all k ≤ m + 1.

Proof. Suppose Xk ∩ Σ+θ(Xm)Σ+ �= ∅ for some k < m + 1, then ∅ �= Xm+1 ∩
Xm+1−kΣ+θ(Xm)Σ+ ⊆ Xm+1 ∩ Σ+θ(Xm)Σ+ which is a contradiction to our
assumption X is a θ-intercode of index m.
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Proposition 17. If X ⊆ Σ+ is a θ-intercode of index m, m ≥ 1 and X is
strictly θ-infix, then Xn ∩ Σ+θ(Xm)Σ+ = ∅ and Xm ∩ Σθ(Xn)Σ+ = ∅ for all
n ≥ m.

Proof. We prove by induction on n. Suppose for n = m, x ∈ Xm ∩Σ+θ(Xm)Σ+

then x = x1...xm = aθ(y1)...θ(ym)b. Then atleast one of the θ(yi) is a subword
of xj which is a contradiction to our assumption that X is strictly θ-infix. When
n = m+1, Xm+1 ∩Σ+θ(Xm)Σ+ = ∅ since X is a θ-intercode. Now assume that
Xn ∩ Σ+θ(Xm)Σ+ = ∅ for all m ≤ n ≤ k. Suppose Xk+1 ∩ Σ+θ(Xm)Σ+ �=
∅, then there exists x1, x2, ..., xk+1, y1, y2..., ym ∈ X such that x1x2...xk+1 =
aθ(y1)θ(y2)...θ(ym)b. If |a| = |x1| then x2...xk = θ(y1)...θ(ym)b which implies
either x2 is a subword of θ(y1) or θ(y1) is a subword of x2 which contradicts our
assumption that X is strictly θ-infix. If |a| > |x1| then x2...xk = a1θ(y1)...θ(ym)b
which implies that Xk−1 ∩ Σ+θ(Xm)Σ+ �= ∅ which is a contradiction to our
induction hypothesis. The cases when |b| = |xk+1| or |b| > |xk+1| are similar to
the case when |a| = |x1| or |a| > |x1| respectively. If |a| < |x1| and |b| < |xk| then
atleast one of θ(yi) is a subword of xj which is a contradiction to our assumption
that X is strictly θ-infix. �

Proposition 18. If X is a θ-intercode of index m and X is strictly θ-infix, then
Xn is a θ-intercode of index m, for all n ≥ 1.

Proof. We need to show that (Xn)m+1∩Σ+(θ(Xn))mΣ+ = ∅ for all n > 1 . Then
(Xn)m+1 ∩ Σ+(θ(Xn))mΣ+ = (Xnm+n) ∩ Σ+θ(Xnm)Σ+. Note that by propo-
sition 12 X is a θ-intercode of index nm and hence Xnm+1 ∩Σ+θ(Xnm)Σ+ = ∅.
Then by proposition 17 (Xnm+n)∩Σ+θ(Xnm)Σ+ = ∅. Hence Xn is a θ-intercode
of index m. �

Proposition 19. If X is a θ-intercode of index m and X is strictly θ-infix then
X+ is a θ-intercode of index m.

Proof. Suppose X+ is not θ-intercode of index m, then there exists x, y ∈ X+

such that x = x1...xm+1 and y = y1..ym for all xi, yj ∈ X+ and x = aθ(y)b
for some a, b ∈ Σ+. The case when xi, yj ∈ X for all i, j then x ∈ Xm+1 ∩
Σ+θ(Xm)Σ+ which is a contradiction. If x ∈ Xp and y ∈ Xq for some p, q ≥ m
then x ∈ Xp ∩ Σ+θ(Xq)Σ+ which is a contradiction by Proposition 12 and 17.
Hence X+ is a θ-intercode of index m. �

Proposition 20. If X ∪Y is a θ-intercode of index m then XY is a θ-intercode
of index m.

Proof. Suppose (XY )m+1 ∩ Σ+θ((XY )m)Σ+ �= ∅ then let r ∈ (XY )m+1 such
that r = x1y1x2y2...xm+1ym+1 = aθ(p1q1...pmqm)b for x1, ..., xm+1, p1, ..., pm ∈
X and y1, ..., ym+1, q1, ..., qm ∈ Y and a, b ∈ Σ+. But r ∈ (X ∪ Y )2(m+1) ∩
Σ+θ((X ∪ Y )2m)Σ+ which is a contradiction by Proposition 12 and 17. �
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5 n-θ-Comma-Free Codes and n-θ-Intercodes

If the alphabet Σ consists of more than one letter, the partial order ≤c defined
on Σ∗ by u ≤c v if and only if v = xu = ux for some x ∈ Σ∗ plays an interesting
role. That is if u ≤c v, then u = f i for some primitive word f (f is primitive if
f = ai, a ∈ Σ+ for some i implies i = 1) and v = f i+j for some j ≥ 0. Thus if
u, v ∈ X ⊆ Σ+ and X is an independent set with respect to ≤c, then uv �= vu,
which is equivalent to the fact that the two element set {u, v} is a code. Hence a
≤c-independent set is called a 2-code. This notion can be generalized as follows:
An n-code is a set X with the property that every n element subset of the set X is
a code ([26]). The notion of n-codes, n-comma free codes and hence n-intercodes
were defined and studied in [26]. Here we extend these concepts to involution
comma-free and involution intercodes as follows. This section investigates these
notions and algebraic properties of these codes. An n-θ-intercode of index m is
a language X ⊆ Σ+ such that every subset of X with at most n elements is
a θ-intercode of index m. An n-θ-comma-free code is an n-θ-intercode of index
one.

Proposition 21. The class of 2-θ-comma-free codes is not closed under union,
catenation, complement, catenation closure.

Proof. The proof will be done by constructing some examples. We consider two
languages {ab} and {ba} that are 2-θ-comma-free for an antimorphic θ mapping
a �→ b. It is clear that the union {ab, ba} = {ab, ba}, the product {ab}2 and
the catenation closure {(ab)+} are not 2-θ-comma-free codes. Also, the class
of 2-θ-comma-free codes are closed under intersection but not under union or
complement.

Proposition 22. If X is a 2-θ-comma-free code then X is θ-infix.

Proof. Suppose X is not θ-infix then there exists x, y ∈ X such that x = aθ(y)b
which implies {x, y} is not θ-infix and hence not θ-comma-free which is a con-
tradiction. Hence X is θ-infix. �

Proposition 23. Let X ⊆ Σ+ be such that X ∩ θ(X) = ∅ and θ(PSuff(X)) ∩
PPref(X) = ∅.

Then the following are equivalent.

1. X is a 2-θ-comma-free code.
2. X is θ-infix and for u, v ∈ Σ+, if uv ∈ θ(X) then X ∩ vΣ∗u = ∅.

Proof. Note that from Proposition 22 X is θ-infix. Let u, v ∈ Σ+ such that uv ∈
θ(X). If X ′ = {θ(uv), vxu} ⊆ X for some x ∈ Σ∗, then (vxu)2 ∈ X ′2∩Σ+X ′Σ+.
This implies that X is not a 2-θ-comma-free code.

For the converse, let X be θ-infix. Suppose there exists x, y ∈ X such that
{x, y} is not θ-comma-free then the either xy = aθ(x)b or x2 = aθ(x)b or y2 =
aθ(x)b or yx = aθ(x)b for some a, b ∈ Σ+. Since X is θ-infix, θ(x) is not a proper
subword of x or y. Also note that θ(x) �= x2x1 for x1x2 = x or θ(x) �= y2y1 for
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y1y2 = y since for all uv ∈ θ(X), vΣ∗u ∩ X = ∅. Suppose aθ(x)b = xy, then
θ(x) = x2y1 for x = x1x2 and y = y1y2. When θ is morphism, x = θ(x2)θ(y1) and
when θ is antimorphism, x = θ(y1)θ(x2) both cases contradict our assumption
that θ(PSuff(X)) ∩ PPref(X) = ∅. Hence X is a 2-θ-comma-free code.

Proposition 24. X is a 3-θ-comma-free code if and only if X is a θ-comma-free
code.

Proposition 25. If X is a k-θ-comma-free code then X is a i-θ-comma-free
code for all i ≤ k.

Proof. Immediate. Note that X being k-θ-comma-free code does not imply X is
i-θ-comma-free code for i ≥ k + 1 and k ≤ 2. For example let X = {cbaa, baad,
babb} over the alphabet set Σ = {a, b, c, d}. Let θ be an antimorphic involution
such that a �→ b and c �→ d. It is easy to check that X is not θ-comma-free but
X is 2-θ-comma-free.

Proposition 26. X is a θ-intercode of index m if and only if X is a (2m + 1)-
θ-intercode of index m.

Proof. Let X be (2m+1)-θ-intercode of index m. Suppose X is not θ-intercode of
index m then there exists x1, x2, ..., xm+1, y1, ..ym ∈ X such that x1x2...xm+1 =
aθ(y1...ym)b for some a, b ∈ Σ+ which implies that X is not (2m+1)-θ-intercode
of index m. The converse of the proof is immediate. �

Note that every θ-intercode of index m is an n-θ-intercode of index m for all
n ≥ 1. But for n ≤ 2m an n-θ-intercode of index m is not neccesarily a θ-
intercode of index m. For example.....

Proposition 27. If X is a 2-θ-comma-free code , then Xy and yX are 2-θ-
comma-free code for all y ∈ X.

Proof. Suppose Xy is not 2-θ-comma-free then there exists {x1y, x2y} ⊆ Xy
such that atleast one of the following happens:

x1yx2y = aθ(x1y)b or x1yx2y = aθ(x2y)b or x2yx1y = aθ(x1y)b or x2yx1y =
aθ(x2y)b or x1yx1y = aθ(x1y)b or x1yx1y = aθ(x2y)b or x2yx2y = aθ(x1y)b or
x2yx2y = aθ(x2y)b.

Note that none of the θ(x1) or θ(x2) or θ(y) is a subword of x1, x2 or y since
X is θ-infix. Also none of the θ(xi) or θ(y) is a subword of xiy or yxi since X
is a 2-θ-comma-free code. Suppose in x1yx2y = aθ(x1y)b if θ(x1) is a subword
of yx2 then either θ(y) is a subword of x1 or x2y which is a contradiction to the
given assumption. Similarly we can show that yX is a 2-θ-comma-free code. �

Note that X being 2-θ-comma-free code does not imply Xn is 2-θ-comma-free
code. For example let X = {ebb, dae, aac, bcb}. Let θ be a morphic involution such
that a �→ b, c �→ d and e �→ e. It is easy to check that X is 2-θ-comma-free code
but X2 is not since ebbdae, aacbeb ∈ X2 with ebbdaeaacbeb = eθ(aacbeb)acbeb.
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6 Methods for Constructing Involution Codes

With the constructions in this section we show several ways to generate involu-
tion codes with “good” properties. Many authors have realized that in the design
of DNA strands it is helpful to consider three out of the four bases. This was
the case with several successful experiments [3,8,24]. It turns out that this, or
a variation of this technique, can be generalized in such a way that codes with
some of the desired properties can be easily constructed. Methods to construct
θ-infix, θ-comma-free, θ-k-code and θ-subword-k-codes were provided in [14]. In
this section, we concentrate on providing methods to generate θ-prefix, θ-suffix,
θ-bifix, θ-outfix and θ-intercodes X such that X+ has the same property. Some
of these methods (Proposition 28) are in some sense generalizations of the idea
of considering only three out of four bases. For each code X , the entropy of X+

is computed. The entropy measures the information capacity of the codes, i.e.,
the efficiency of these codes when used to represent information.

Suppose that we have a source alphabet with p symbols each occurring with
probability s1, s2, ...sp. If s1 = 1, then there is no information since we know what
the message must be. If all the probabilities are different then for a symbol with
low probability we get more information than for a symbol with high probability.
Hence information is somewhat inversely related to the probability of occurrence.
Entropy is the average information over the whole alphabet of symbols.

The standard definition of entropy of a code X ⊆ Σ+ uses a probability
distribution over the symbols of the alphabet of X (see [4]). However, for a p-
symbol alphabet, the maximal entropy is obtained when each symbol appears
with the same probability 1

p . In this case the entropy essentially counts the
average number of words of a given length as subwords of the code words [19].
From the Coding Theorem ([1]), it follows that {0, 1}+ can be encoded by X+

with Σ �→ {0, 1} if the entropy of X+ is at least log 2 (see Theorem 5.2.5 in [23]).
The codes for θ-comma-free, strictly θ-comma-free, and θ-k-codes designed in
this section have entropy larger than log 2 when the alphabet has p = 4 symbols.
Hence, such DNA codes can be used for encoding bit-strings.

We start with the entropy definition as defined in [23].

Definition 2. Let X be a code. The entropy of X+ is defined by

h̄(X) = limn→∞
1
n

log |Subn(X+)|.

If G is a deterministic automaton or an automaton with a delay (see [23]) that
recognizes X+ and AG is the adjacency matrix of G, then by Perron-Frobenius
theory AG has a maximal positive eigen value μ̄ and the entropy of X+ is log μ̄
(see Chapter 4 of [23]). We use this fact in the following computations of the
entropies of the designed codes. In [12], Proposition 16, authors designed a set of
DNA code words that is strictly θ-comma-free. The following propositions shows
that, in a similar way, we can construct codes with additional “good” properties.

In what follows we assume that Σ is a finite alphabet with |Σ| ≥ 3 and
θ : Σ → Σ is an involution which is not identity. We denote by p the number of
symbols in Σ.
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Proposition 28. Let a ∈ Σ be such that θ(a) �= a. Let X =
⋃∞

i=1 an(Σ \
θ(a))ian for a fixed integer n ≥ 1. Then X and X+ are both θ-prefix and θ-
suffix. The entropy of X+ is such that log(p − 1) < h̄(X+) < log(p).

Proof. By Proposition 5 it is enough to show that X is strict θ-infix. Let x, y ∈ X
such that uθ(x)b = v for some u, v ∈ Σ∗. Then uθ(anw1a

n)v = anw2a
n for some

w1, w2 ∈ (Σ \ {θ(a)})i which implies ubnw3b
nv = anw2a

n where θ(a) = b which
is not possible since a �= b and b �= Sub(w2). Therefore X is θ-strict-infix code
and hence X+ is both θ-prefix and θ-suffix.

1 2 n+1 n+2
a a a s

s

a a

a

... ...1 2n+1

Fig. 3. Finite state automaton A that recognizes X+ where S = Σ \ θ(a)

Let A = (V , E , λ) be the automaton that recognizes X+ where V = {1, ..., 2n+
1} is the set of vertices, E ⊆ V × Σ × V and λ : E → Σ (with (i, s, j) �→ s) is
the labeling function defined in the following way:

λ(i, s, j) =

⎧
⎨

⎩

a for 1 ≤ i ≤ n, n + 2 ≤ i ≤ 2n, j = i + 1,
and i = 2n + 1, j = 1,

s for i = n + 1, n + 2, j = n + 2, s ∈ Σ \ {θ(a)}
Then the adjacency matrix for A is a (2n+1)×(2n+1) matrix with ijth entry

equal to the number of edges from vertex i to vertex j. Then the characteristic
polynomial can be computed to be det(A−μI) = (−μ)2n(p−1−μ)+(−1)2n(p−1).
The eigen values are solutions of the equation μ2n(p − 1) − μ2n+1 + p − 1 = 0
which gives p − 1 = μ − μ

μ2n+1 . Hence 0 < μ
μ2n+1 < 1, i.e., p − 1 < μ < p. �

In the case of the DNA alphabet, p = 4 and for n = 1 the above characteristic
equation becomes μ3 − 3μ2 − 3 = 0. The largest real value of μ is approximately
3.27902 which means that the entropy of X+ is greater than log 2.

Proposition 29. Let a, b ∈ Σ be such that for all θ(a) �= θ(b) �= a �= b. Let
X =

⋃∞
i=1 anΣibn for a fixed integer n ≥ 1. Then X and X+ are θ-bifix and

θ-outfix. The entropy of X+ is such that log(p − 1) < h̄(X+) < log(p).

In the case of the DNA alphabet, p = 4 and for n = 1 the above characteristic
equation becomes μ3 − 4μ2 − 4 = 0. The largest real value of μ is approximately
4.22417 which means that the entropy of X+ is greater than log 2.

Proposition 30. Choose distinct a, b, c ∈ Σ such that θ(a) �= b, c, θ(a) �= a.
Let X =

⋃∞
i=1 an(Σn−1c)ibn for some n ≥ 2. Then X and so X+ are strictly θ-

intercodes of index m for all m ≥ 1. The entropy of X+ is such that log(p
n−1

n ) <

h̄(X+) < log((pn−1 + 1)
1
n ).
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For the DNA alphabet, p = 4, and for n = 2, the above characteristic equation
becomes μ6 − 4μ4 − 4 = 0. Solving for μ, the largest real value of μ is 2.05528.
Hence the entropy of X+ is greater than log 2.

7 Concluding Remarks

In this paper we investigated theoretical properties of languages that avoided
certain type of undesirable Watson-Crick bindings; θ-outfix codes, θ-intercodes,
n-θ-intercodes and n-θ-comma-free codes. All these new concepts generalize clas-
sical notions of outfix codes, intercodes, n-intercodes and n-comma-free codes
respectively. In addition, DNA word sets that are θ-outfix codes or θ-intercodes
are of interest in the design of DNA computing experiments since such sets avoid
unwanted hybridization Fig 1 and Fig 2. This paper We also developed certain
methods to construct such sets of DNA code words with good properties and
have calculated their informational entropy.
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